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Hydrodynamic parameters from the Michaels and Bolger method
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Abstract

For different initial heights and solids concentration of flocculated calcium carbonate suspensions in the compression range, the variations
of the subsidence rates are discussed in accordance with the Michaels and Bolger method. A mathematical model based on the consolidation
theory has been applied to generalize the Michaels and Bolger method, and to discuss the relationships between the permeability, the effective
pressure and the solids concentration. In accordance with this model and the experimental results, it is deduced that the relationship
between the effective pressure and the solids concentration differs considerably from that obtained by other methods, whereas the values
of permeability for different solids concentration are close to those deduced by different methods. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

This paper discusses the sedimentation batch test with
calcium carbonate suspensions in the compression range,
when the suspension can be considered a network of chan-
nels through which the fluid flows upwards, while the solids
are flowing downwards. The behavior of flocculated suspen-
sions can be characterized by the relationships between the
effective pressure of solids, the permeability and the solids
concentration. In the compression range, the sedimentation
of the solids takes place as a consequence of the unbuoyed
weight of the upper solids minus the friction force exerted
by the liquid flowing upwards between the solids as consid-
ered and stated by different authors: Michaels and Bolger
[1], Shirato et al. [2], Smiles [3], Blake and Colombera [4]
and Kos [5]. It is assumed that the solids structure responds
instantaneously to stress change as discussed by Fitch [6,7],
Tiller [8] and Font [9] and so the volume fraction of solids.
εs is a function of the effective pressureps. Bustos and Con-
cha consider the variation of momentum with respect to time
in a one-dimensional conservation equation [10].

Shirato et al. [2], Fitch [6], Tiller [8] and Font [9] used the
Darcy equation to analyze batch sedimentation as indicated
in the following equation:
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−∂ps

∂x
= (ρs − ρ) g (1 − ε) + ∂p+

∂x
= (ρs − ρ) g (1 − ε) − (µε/k) (u − us) (1)

wherep+ is the manometric, dynamic or hydraulic excess
liquid pressure.

The effective pressureps on each layer of particles is the
result of the downward force of the unbuoyed weight of
aggregates minus the upward force of friction due to Darcian
flow. The valuesε andεs are the volume fraction of voids or
porosity, and the volume fraction of solids in the sediment,
respectively,u and us the average velocity of liquid and
settling solids respectively,µ is the liquid viscosity andk is
the permeability. The velocities are considered positive when
the direction is upwards. For batch testing sedimentation
whereu andus have opposite signs, it can be written that:

uε + us (1 − ε) = 0 (2)

and from Eq. (2), it is possible to deduce that:

u − us = −us/ε (3)

Considering Eqs. (2) and (3), Eq. (1) becomes [6,8,9]

−∂ps

∂x
= (ρs − ρ) gεs − (µ/k) (−us) (4)

Eq. (4) can be employed to explain the basis of the Michaels
and Bolger model [6].

Michaels and Bolger assumed that at the initial moment,
only the pulp at the bottom of the vessel is compressing,
thus integrating Eq. (4) betweenx= 0 (bottom of the vessel)
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Nomenclature

C1 ((kεs
3)/µ)(dps/dεs); consolidation coefficient

variable throughout the column and time
(m2/s)

C2 −((g1ρωoεs
2)/µ)d(kεs)/dεs; modified conso-

lidation coefficient variable throughout the
column and the time (m2/s)

Do diameter of the container tube (m)
Dy yield diameter (m)
e local void of the suspension equalsε/(1−ε)
f(t) permeability factor varying with time
fk parameter in Eq. (40)
fp pressure factor of Eq. (41)
g gravity acceleration (m/s2)
H height of the pulp-supernatant interface (m)
h dimensionless height of each interval

throughout the columnh= 1/(n+ 1)
Hy parameter of Eq. (9) (m)
Ho initial height of the suspension att = 0 (m)
Hm height corresponding to the bottom of

the constant zone (m)
k permeability coefficient (m2)
K1 k(εs)εs/µ; modified permeability

coefficient (m4/N s)
n interval numbers of the column
p+ manometric, dynamic or hydraulic excess

pressure (N/m2)
ps effective pressure of solids (N/m2)
psm maximum pressure of solids at the bottom

of the vessel (N/m2)
t time (s)
tm parameter in Eq. (40) (s)
u fluid velocity (m/s)
us solid sedimentation velocity (m/s)
u′

s settling velocity of solids in absence
of compressive force (m/s)

x distance down column (m)
yi

j value of dimensionless pressureΦ(z, t)
at intervali and timej

z ω/ωo; dimensionless coordinate used in
the simulation process (0≤ z≤ 1)

Greek letters

ϕi
j function given by Eq. (39)

ε = 1− εs porosity or fraction of liquid in
suspension (m3 liquid/m3 suspension)

εs volume fraction of solids (m3 solid/m3

suspension)
εso initial volume fraction of solids

in suspension (m3 solid/m3 suspension)
τ interval of time (s)
Φ(z, t) ps (z, t) /1ρgωo; dimensionless

solid pressure

Φm maximum dimensionless solid pressure
at the bottom of the column (N/m2)

µ viscosity of liquid (Kg/ms)
ρ density of liquid (kg/m3)
ρs density of solids (kg/m3)
ω volume of solids per unit area at

distancex to the bottom (m)
ωo initial value ofω: ωo=εsoHo; total

volume of solids per unit of area
υ rising rate of the non constant concentration

zone above the bottom

and x= Ho (initial height of suspension) where the solids
pressure is nil, it can be written that:

−
∫ 0

psm

dps =
∫ Ho

0
g (ρs − ρ) εsdx

−
∫ Ho

0
(µ/k (εs)) (−us) dx (5)

psm = g (ρs − ρ) εsoHo − (µ/k (εso)) (−uso) Ho (6)

wherepsm is the solids pressure at the bottom of the column
at t = 0, εso is the initial fraction volume of solids,k(εso) is
the suspension permeability value atεs= εso, and (−uso) is
the initial batch settling rate of the pulp in the compression
range.

Introducing the settling velocity of solids (−u′
s) in the

absence of compressive force (i.e. whenHo is infinite) and
the heightHy, defined as the height of solids that can be
sustained by a solids pressure equal topsm at the bottom of
vessel where (−us) is zero, it can be deduced from Eq. (6)
that

g (ρs − ρ) εso = (µ/k (εso))
(−u′

s

)
(7)

psm = g (ρs − ρ) εsoHy (8)

and substituting Eqs. (7) and (8) in Eq. (6), the Michaels
and Bolger relationship is obtained:

(−us) = (−u′
s

) (
1 − (

Hy/Ho
))

(9)

Note that in the previous equations, the wall effects have
been considered negligible. Considering the wall effects,
Eq. (9) should be written as

(−us) = (−u′
s

) (
1 − (

Hy/Ho
)− (

Dy/Do
))

(10)

whereDo is the diameter of the container tube andDy is the
yield diameter [1].

The parametersHy and (− u′
s) can be determined as fol-

lows. For a given initial concentration of the fraction vol-
ume of solidsεso and several tests with different values of
Ho, the corresponding values of (−uso) are obtained. A plot
of (−us) versus 1/Ho should be a straight line in accordance
with Eq. (9). The intercepts with the 1/Ho and (−us) axes
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give the parametersHy and (−u′
s) respectively. It can be ob-

served that from these values, the constitutive relationships

ps = ps (εs) (11)

k = k (εs) (12)

can be obtained for different initial solids concentration
through Eqs. (7) and (8).

It is curious that Fitch [6,11] proposed the use of the
relationships obtained by the Michaels and Bolger method
to obtain the relationship between the permeability and the
maximum settling velocity (−u′

s) when there is no solids
stress gradient, whereas the relation between the effective
pressure and the solids concentration is obtained by another
method (considering the average solids concentration of dif-
ferent sludges with different heights at time infinity when
there is no subsidence rate in any layer).

On the other hand, Font et al. [12] showed with experi-
mental data of calcium carbonate suspensions, that the val-
ues of permeability obtained by the Michaels and Bolger
method were similar to those obtained considering data of
solids concentration at the sediment of a batch test, whereas
the relationshipps= f(εs) obtained from the Michaels and
Bolger method is very different from that obtained consider-
ing the average solids concentration with different sediment
heights at time infinity.

Relationships (11) and (12) are useful for the design of
thickeners, simulation and for characterization of the sus-
pension [11,13–16].

Michaels and Bolger [1] used kaolin suspensions with low
values of the volume fraction of solids in the 0.0023–0.0065
range, and probably in the non-compression range, the
method seems incorrect. The aim of this paper is to analyze
the method proposed by the Michaels and Bolger model, for
determining the relationships between the effective pressure
of solids, the permeability and the solids concentration.

2. Materials

Commercial calcium carbonate was used to prepare the
suspensions. The chemical composition was the following:
CaCO3 = 98.47 wt.%; MgCO3 = 1.00 wt.%; Fe2O3 = 0.016
wt.%; SiO2 = 0.22 wt.%; Al2O3 = 0.20 wt.%. The average
surface particle diameter obtained by laser diffraction and
X-ray absorption sedimentation techniques was 3.6mm. The
granulometric weight distribution was the following:<2 mm
10%, between 2 and 4.6mm 20%, between 4.6 and 7.6mm
20%, between 7.6 and 12mm 20%, between 12 and 22mm
20%, and between 22 and 80mm 10%. All experiments pre-
sented in this paper correspond to suspensions with similar
hydrodynamic behavior. The experiments were carried out
at 20◦C in graduated cylinders at different heights, from 0.6
to 1.2 m and with an internal diameter equal to 0.06 m. The
particle density at 20◦C was 2554 kg/m3. The wall effects
were considered negligible.

3. Experimental results

The experimental results were obtained from 23 batch
tests with different initial solids concentration at the com-
pression range and with different initial heights. Five series
with initial volume fractions of solids 0.152, 0.187, 0.197,
0.200 and 0.216 were carried out, with initial heights be-
tween 1.1 and 0.5 m. Experiments at greater values of solids
concentration were not considered because the discontinuity
did not descend at horizontal level. Fig. 1 shows the results
of a series corresponding to different initial heights and the
same initial volume fraction of solids.

It can be observed that the slopes (absolute values) of
the settling curves initially increase with time, then become
nearly constant and after a period of the time decrease
continuously. The increasing slope of the settling curve at
the beginning of the tests is probably due to the fact that
the structure of the aggregates network changes with time
and with channeling formation, as occurs in the sediment
in batch testing with the initial solids concentration in the
non-compression range [16]. Nevertheless this aspect is
discussed later. The values of (−us) are obtained from the
slope corresponding to the straight line drawn after the
induction period (Fig. 1).

In order to determine the values of parametersHy and
(−u′

s) for a given concentration, values of (−us) versus 1/Ho
are plotted, as shown in Fig. 2. The intercepts of the straight
lines with the 1/Ho axis give the values of 1/Hy, and the in-
tercepts with the (−us) axis give the (−u′

s) values. Table 1
shows the values obtained ofpsm and the permeabilityk,
considering the experimental data shown in Fig. 2, in accor-
dance with Eqs. (7)–(9).

The values of the permeability were determined in the
range ofεs between 0.152 and 0.216 and, as indicated in
a previous paper [12], agree with those obtained by other
methods, considering batch tests with determination of the
solids concentration at different heights and times [12].
The value of the critical or gel volume fraction of solids
was 0.152. The permeability values can be satisfactorily
correlated with the volume fraction of solidsεs by the

Fig. 1. Batch tests in accordance with the Michaels and Bolger method.
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Table 1
Values of permeability and solids pressure

εs (m3 sol./m3 sus.) (−u′
s)×105 (m/s) 1/Hy (m−1) k×1011 (m2) psm (N/m2)

0.152 7.43 3.56 3.12 650
0.187 5.58 2.33 1.96 1222
0.197 5.18 2.04 1.72 1470
0.200 4.94 1.95 1.61 1561
0.216 3.87 1.78 1.17 1848

Fig. 2. Settling rates vs. the inverse of initial height in accordance with
the Michaels and Bolger method.

equation

k = exp
[
−19.63ε3

s − 51.66ε2
s + 5.09εs − 23.54

]
(m2)

(13)

for 0.152≤ εs ≤ 0.216.
The values ofpsm as a function of solids concentration,

obtained by the Michaels and Bolger method are adjusted
to the following potential law:

ps = 2.031 · 105 · ε3.0447
s (N/m2) (14)

for 0.152≤ εs ≤ 0.216.
The values ofps deduced from Eq. (13) are much greater

than the values obtained from the sediment height at time
infinity [12], correlated by the following equation:

ps = 61.752 · ln (0.3199/ (0.4755− εs)) (N/m2) (15)

For the values ofεs between 0.152 and 0.216, the values
of ps deduced from Eq. (13) are 150–200 times the values
obtained from Eq. (14). This great discrepancy could be due
to a change of the structure, and is discussed in this paper.
In addition, it can be deduced that the value ofps for the
critical or gel solids concentration (εs= 0.152–0.155) is nil
in accordance with Eq. (15) whereas a value around 550
N/m2 is obtained using Eq. (14).

4. Batch test simulation in the compression range

In order to discuss whether the Michaels Bolger method
may be applied, a mathematical model taking into ac-
count the principles of soil mechanics is considered. The
mathematical model is based on the consolidation theory,

originally developed by Terzaghi and Peck [17], and also
used later by Shirato et al. [2,18]. This model explains the
settling of slurries due to the consolidation and electroforced
sedimentation in the compression range.

The principles of the consolidation theory are applicable
to the analysis of settling with compactation or compres-
sion, i.e. when the initial volume fraction of solids is larger
than the so-called critical value or gel concentrationεs1
(εs1= 0.155 for calcium carbonate used in this paper [12]).
Nevertheless, some important differences can be noted be-
tween the consolidation theory and the settling of slurries in
the compression range.

In the consolidation theory, the consolidation coefficients
remain constant (in accordance with Terzaghi’s theory).
However, this assumption is not applicable to compressible
sediments, and the analytical or computerized solutions
must be obtained for variable consolidation coefficients. The
basic equations of the model are expressed as a function of
the material coordinateω, defined as

ω =
∫ x

0
εsdx (16)

where ω is the volume of solids per cross-sectional area
between the bottom and the layer at distancex as can be
seen in Fig. 3.

Introducing the material coordinate (Shirato et al. [2,18]),
the equations of continuity and momentum conservation can
be written as

∂ (−us)

∂ω
= −∂e

∂t
(17)

Fig. 3. Definition of material coordinates used in simulation.
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−εs
∂ps

∂ω
= g (ρs − ρ) εs − µ

k (εs)
(−us) (18)

wheree is the void ratio of the suspension defined as

e = ε/(1 − ε) = (1 − εs)/εs (19)

Differentiating Eq. (18) with respect toω and substituting
∂ (−us) /∂ω into Eq. (17), it can be deduced that

−∂e

∂t
= ∂K1

∂ω

[
g (ρs − ρ) + ∂ps

∂ω

]
+ K1

∂2ps

∂ω2
(20)

whereK1 is the modified permeability coefficient defined as

K1 = k (εs) εs/µ (21)

Assuming that the void ratio e is only a function of the solid
compressive pressureps, it is deduced that

e = e (ps) (22)

∂e

∂t
= ∂ps

∂t

(
dps

de

)−1

(23)

Substituting Eq. (23) into Eq. (20) and rearranging yields

∂ps

∂t
= −K1

dps

de

∂2ps

∂ω2

−dK1

de

[(
∂ps

∂ω

)2

+ (ρs − ρ)

(
∂ps

∂ω

)]
(24)

Introducing the following notation

C1 = −K1
dps

dεs

dεs

de
= k (εs) ε3

s

µ

dps

dεs

C2 = ωog (ρs − ρ)
dK1

dεs

dεs

de

= −
(

g (ρs − ρ) ωoε
2
s

µ

)
d [k (εs) εs]

dεs




(25)

and considering the dimensionless coordinates

Φ = ps/ (g (ρs − ρ) ωo) z = ω/ωo (26)

Eq. (24) yields the mathematical model of the batch sed-
imentation with compression expressed in dimensionless
coordinates:

∂Φ (z, t)

∂t
=
(

C1 (z, t)

ω2
o

)
∂2Φ (z, t)

∂z2
−
(

C2 (z, t)

ω2
o

)

×
[(

∂Φ (z, t)

∂z

)2

+ ∂Φ (z, t)

∂z

]
(27)

Eq. (27) is a non-linear partial differential equation of the
parabolic type.

Equations similar to Eq. (27) but with other coordinate
systems are considered by Shirato et al. [2,18], Kos [5],
Smiles [3] and Blake and Colombera [4]. The constitutive
equations relatingk andps with the volume fraction of solids
εs, must be known for integrating Eq. (27).

Eq. (27) cannot be integrated analytically and must there-
fore be solved numerically, together with Eqs. (13) and (14)
or Eq. (15) considering the boundary and initial conditions.
The boundary conditions are the following:

(i) For z= 1 (top of the sediment where the material co-
ordinateω is constant and equalsωo the solids pressure is
always nil, so

(Φ)z=1 = 0 (28)

(ii) For z= 0 (bottom of the vessel whereω = 0) the sed-
imentation velocity is zero and from the momentum conser-
vation equation (Eq. (18)), it is deduced that

−εs
∂ps

∂ω
= g (ρs − ρ) εs ⇒

(
∂Φ

∂z

)
z=0

= −1 (29)

In order to define an initial conditionΦ(z, 0), the Michaels
and Bolger model [1] can be considered. At the initial mo-
ment t = 0, the suspension concentration remains constant
throughout the column. The permeability and the sedimen-
tation velocity are therefore also constant, so Eq. (6) can be
written in material coordinate as

εsopsm = g (ρs − ρ) εsoωo − (µ/k (εso)) (−uso) ωo (30)

Integrating Eq. (18) betweenω = 0 and an arbitrary value
ω, where the solids pressure isps, leads to

εso(psm − ps) = g (ρs − ρ) εsoω − (µ/k (εso)) (−uso) ω

(31)

Eliminating(µ/k (εso)) (−uso) between Eqs. (30) and (31),
the solids pressure in dimensionless coordinates (Eq. (26))
can be expressed as

Φ (z, 0) = Φm (1 − z) (32)

whereΦm is the maximum value of dimensionless pressure
at the bottom of vessel

Φm = psm/ (g (ρs − ρ) ωo) (33)

In accordance with Eq. (33), the solids pressure at the
initial moment varies linearly from zero at the top of the
sediment to a maximum valuepsm at the bottom of the vessel.
Fig. 4 shows the initial distribution of solids pressure as a
function of the dimensionless coordinatez, and a possible
distribution after a timet1 > 0. It is possible to know the value
of (psm)t=t1

from Eq. (14), which was determined at the time
t > 0 in accordance with the Michaels and Bolger model.

For integrating Eq. (27), an explicit difference scheme of
three layers was used, that has been explained extensively
in another paper [19]. This scheme is unconditionally stable
and has no restriction in the integration step. It is therefore
possible to carry out the integration very quickly in compar-
ison with other methods. A forward difference approxima-
tion is used for the partial derivative with respect to time, so
it can be written that

∂Φ (z, t)

∂t
≈ y

j+1
i − y

j
i

τ
(34)
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Fig. 4. Distribution of solids pressure at timest = 0 and t = t1.

where the superscriptj + 1 denotes the values at timet + 1t
andj refers to those values at timet, and the spatial location
is given by subindexi. A central difference approximation
is employed for the first and second derivatives with respect
to z, so it is possible to obtain the approximation at timet
and distancez as follows:

∂Φ (z, t)

∂z
≈ y

j

i+1 − y
j

i−1

2h

∂2Φ (z, t)

∂z2
≈

y
j

i+1 −
(
y

j+1
i + y

j−1
i

)
+ y

j

i−1

h2




(35)

whereh equals 1/(n+ 1) andn+ 1 is the number of spatial
intervals (see Fig. 5).

Taking into account Eqs. (27)–(29), Eq. (3) and Eq. (35),
the following equations are deduced:

y
j+1
i − y

j−1
i

2.τ
= (C1)

j
i

ω2
0

.

×
[

y
j

i+1 − (y
j+1
i + y

j−1
i ) + y

j

i−1

h2

]
+ ϕ

j
i

i = 1,2 . . . ; 1 ≤ i ≤ (n + 1)




(36)

y0
i = psm

g (ρs − ρ) ωo

(
1 − i − 1

n

)
(37)

Fig. 5. Intervals throughout the column expressed in material coordinates.

y
j

n+1 = 0 ; y
j

2 − y
j

0

2h
= −1 (38)

where the functionϕj
i is defined as

ϕ
j
i = − (C2)

j
i

ωo



(

y
j

i+1 − y
j

i−1

2h

)2

+ y
j

i+1 − y
j

i−1

2h


 (39)

In Eq. (39), the domain ofyhas been extended one step to the
other side of the boundary, considering an imaginary point
y

j

0 that is eliminated from the boundary derivative condition.
The difference scheme of three layers has a disadvantage

in that it is not self-starting, since the values of the solution
are needed at bothyo and y1 before the method can be
applied for the first time. This problem is overcome with
a difference scheme of two layers which gives the starting
values necessary to carry out the integration process.

5. Results and discussion from the simulation

In order to discuss the Michaels and Bolger method
for obtaining the constitutive relationships (Eqs. (11) and
(12)), several simulations have been carried out with the
mathematical model developed in this work. The simulation
program was prepared using Matlab, calculating the distribu-
tion of the concentration and the pressure of solids, and the
sedimentation velocity throughout the column at different
times.

In all cases, Eq. (27) was integrated with the boundary
and initial conditions explained previously. In each case,
the constitutive relationshipsk= f(εs) and ps= f(εs) are
different.

5.1. Case I: the relationships k= f(εs), ps = f(εs) are those
obtained directly by Eqs. (13) and (15)

In this case, the relationk= f(εs) used is that deduced
from the Michaels and Bolger method, with no correction
factor. The relationps= f(εs) used is Eq. (15), obtained from
the sediment heights at time infinite [12]. Fig. 6 shows the
variation of the supernatant suspension height versus time
and also the experimental values. It can be observed that
there is a great discrepancy between the experimental results
and the simulated ones, obtained with Eqs. (13) and (15).

5.2. Case II: the relationships k= f(εs), ps = f(εs)

k(εs, t) = f (t) · exp[−19.63ε3
s − 51.66ε2

s
+5.09εs − 23.54]

f (t) = 1

fk − (fk − 1)t

tm

for t ≤ tm

f (t) = 1 for t > tm




(40)
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Fig. 6. Experimental values of the pulp-supernatant interface and values
obtained by simulation in case I. Parameters:εso= 0.187,Ho = 0.913 m,
fp = 1, f(t)=1.

and

ps = fp · 2.031 · 105 · ε3.0447
s (41)

In the constitutive relationships (Eqs. (40) and (41)),
the permeability and the solids pressure deduced from the
Michaels and Bolger method, are used with correction
factors, indicated in the index of Fig. 7, as follows:
1. For the permeability, a correction factorf(t) is included

(Eq. (40)), so the permeability is a function of the time
and the factorf(t) for t = 0 equals 1/fk and the perme-
ability is fk times lower than the value obtained from
Eq. (13). Whent = tm, f(t) equals 1, the permeability does
not depend on the time. This is due to the fact that the
suspension is less permeable at the beginning of the test
than later when the channels are formed.

2. For the effective pressure, another factorfp is also con-
sidered, because the relationshipps= f(εs) deduced from
the Michaels and Bolger method is obtained from the
straight lineH–t after an initial induced period of time
(see Fig. 4).
Fig. 7 shows the experimental and simulated variation of

the supernatant suspension interface for three runs, where
the values offk, tm and fp have been considered. It can be
seen that there is a good correlation of the experimental data

Fig. 7. Experimental and simulated values of the upper interface obtained
in case II. Parameters:εso= 0.187, Rune fp = 0.60, fk = 13, tm = 3000
s.; Run h fp = 0.76, fk = 12.7, tm = 3000 s; Runs fp = 0.59, fk = 8,
tm = 2400 s.

with the simulation program, with the boundary and initial
conditions and with the correction factors. For the other
tests, good correlations were also obtained, but with their
corresponding values offk, tm and fp close to those of the
experiments shown in Fig. 7.

The value of factorfp is considered in accordance with
the following fact. It was deduced that the solids pressure at
t = 0 is a straight line from the Michaels and Bolger model.
However, the solids pressurespsm are obtained att > 0, con-
sidering the initial heightHo, instead of another height less
thanHo, because the zone of constant concentration has de-
creased (this will be considered in Fig. 10). Therefore for
evaluating(psm)t=0, it is necessary to introduce the factor
fp < 1 that multiplies(psm)t>0. This factor is unknown and
must be introduced in the simulation program to adjust the
simulation values to the experimental one. Values of 0.6–0.8
have been used to obtain a good agreement between the sim-
ulated and experimental results.

If any of the correction expression are not used, the exper-
imental results cannot be simulated correctly. Using other
expressions for the correction factor, the experimental data
can also be correlated. The relationshipps= f(εs) can also
change with the time, because the final sludge height is less
than that predicted experimentally. Nevertheless, a variation
of ps= f(εs) with time has not been considered, because this
is not necessary for the purpose of this paper.

5.3. Case III: the relationships k= f(εs), ps = f(εs)

k (εs) =exp
[
−19.63ε3

s − 51.66ε2
s + 5.09εs − 23.54

]
(42)

ps = fp · 2.031 · 105ε3.0447
s (43)

In this case, there is no correction factor changing with
time for the permeability. Fig. 8 shows the simulated results
together with the experimental points. It can be observed
that there is no induction period of increasing settling rate
with the simulated data.

It can be also deduced that, in this hypothetical case,
considering the absence of permeability changing with time,
there is a considerable decrease in the settling rate along the

Fig. 8. Experimental and simulated values of the upper interface obtained
in Case III. Parameters:εso= 0.187,Ho = 0.913 m,fp = 0.60, f(t) = 1.
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Fig. 9. Upper discontinuity during the first period of time obtained in
Case III. Parameters:εso= 0.187,Ho = 0.913 m,fp = 0.6, f(t) = 1.

run. There is another interesting aspect in the simulation of
this case.

Fig. 9 shows the variation of the upper discontinuity dur-
ing a short period of time (case III). Note that the value of
(−us) obtained by the program is equal to that observed dur-
ing the first few seconds. If other values are considered, the
program produces numerical instabilities.

Fig. 10 shows the variation of the upper discontinuity and
the zone of constant concentration with time for the case
III. It can be observed that whereas the upper discontinuity
descends very slowly, the zone of concentration greater
than εso rises very quickly. An explanation of this fact is
discussed as follows: At any time, considering the balance
of forces applied to the zone of constant concentration it
can be written that

psm= (g (ρs−ρ) εso− (µ/k (εso)) (−us)) (H − Hm) (44)

where psm and k(εso) are the solids pressure and perme-
ability corresponds to the initial solids concentrationεso,
H is the height of the pulp-supernatant interface, and Hm
is the height corresponding to the bottom of the zone of
constant concentration. Note that Eq. (44) leads to Eq. (8)
at the beginning of the test whenH = Ho andHm = 0. On
the other hand, the rising velocity of the layer of constant
concentration can be written as:

υ = dx

dt
= − ∂εs/∂t

∂εs/∂x
(45)

Fig. 10. Variation of the upper discontinuity and the region of constant
concentration. Parameters:εso= 0.187,Ho = 0.913 m,fp = 0.6, f(t) = 1.

Fig. 11. Flux density vs. volume fraction of solids.

and considering the continuity equation

∂εs

∂t
− ∂ [εs (−us)]

∂x
= 0 (46)

it can be deduced that

υ = −∂ [εs (−us)] /∂x

∂εs/∂x
= −∂ [εs (−us)]

∂εs
(47)

whereυ changes with time.
Considering the flux diagram (−us)εs versusεs shown

in Fig. 11, the initial consolidation considered corresponds
to all the suspension with constant concentrationεso and
subsidence rate of (−uso), and the layer at the bottom with
constant concentrationεso and (−uso) equals zero. After
an initial period of time, the variation of the flux of the
solids can be similar to that indicated in Fig. 11, so the
rising velocityυ corresponding to the layer of heightHm is
very great. Consequently, if the variation ofHm is great, in
accordance with Eq. (44) the variation of (−us) must also be
great, as shown with the simulation program (Fig. 9). This
means, that although the Michaels and Bolger hypothesis
can be considered as correct att = 0, the observed velocity,
after an initial period of time, without effects of changing
permeability, would be less.

In practice, the permeability also changes with time and
the initial settling rate is determined experimentally after an
initial period, in which there is also a considerable change in
the height of the zone of constant solids concentration and,
consequently, this does not exactly correspond to the initial
conditions.

In spite of these aspects, the variation ofk= f(εs) agrees
with that obtained by other methods. This is probably due to
the fact that at great initial heights, the settling rate is close to
the maximum possible. On the other hand, the relationship
ps= f(εs) obtained from the Michaels and Bolger method
is not representative of the consolidation process, due to
two reasons: (a) values of pressure are necessary to force
the formation of channels, and (b) the application of the
Michaels and Bolger method is only approximate as shown
previously.
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The simulation results show that there is a region ex-
tending from the upper interface downwards, whose volume
fraction of solids is constant and equal to the concentration
of the original suspension at timet = 0. This zone decreases
with time until it disappears when the suspension reaches
the equilibrium state att = ∞. This fact is proved from data
obtained by means of X-rays [20,21] and similar to those
obtained by simulation in this paper, in accordance with the
Michaels and Bolger model [1].

An extension of the paper could be the consideration of
the inertial effects on the momentum balance as taken into
account by Bustos and Concha [10]. Fig. 6 shows the vari-
ation of the experimental height and simulated height of
the supernatant–suspension interface versus time. The sim-
ulated variation was obtained considering the relationships
between the permeability, the effective solids pressure and
the solids concentration corresponding when channels are
formed and the solids settle faster than when channels are
not formed. The shape of the experimental variation cannot
be justified considering single inertial effects of accelera-
tion or deceleration, so these inertial effects although than
can be important probably cannot explain the experimental
variation.

6. Conclusions

The Michaels and Bolger method for determining the con-
stitutive relationship between the permeability and the solids
concentration of a suspension in a compression range, must
be considered as an approximate method, due to the follow-
ing reasons:
1. The Michaels and Bolger method is based on the tangents

to the curveH–t, obtained in batch testing with initial
concentration of solids in the compression range, after an
initial period. Under this condition, the settling process is
advanced, and the zone of constant solids concentration
equal to the initial one has discussed when channeling is
fully developed.

2. The results of the simulation show that the constitutive
relationships (Eqs. (11) and (12)) must change with time,
and both the solids pressure and permeability obtained
by Eqs. (7) and (8) are different to the initial conditions.
This means that the extrapolation by the Michaels and
Bolger method must be considered as approximate. It has
also been tested that the Michaels and Bolger method is
not useful for determining the constitutive relationship
ps = ps (εs), due to the fact that solids pressures are nec-
essary to form channels through which liquid circulates
upwards, greater than those corresponding when chan-
nels are formed.

References

[1] A.S. Michaels, J.C. Bolger, Ind. Eng. Chem. Fundam. 1 (1962) 24.
[2] M. Shirato, T. Aragaki, A. Manabe, AIChE J. 25 (1979) .
[3] D.E. Smiles, Chem. Eng. Sci. 31 (1976) 273.
[4] J.R. Blake, P.M. Colombera, Chem. Eng. Sci. 32 (1977) 221.
[5] P. Kos, Gravity Thickening of Sludges, Ph.D. thesis, University of

Massachusetts, Amherst, 1977.
[6] B. Fitch, AIChE J. 25 (1979) 913.
[7] B. Fitch, AIChE J. 29 (1983) 940.
[8] F.M. Tiller, AIChE J. 27 (1981) 823.
[9] R. Font, AIChE J. 34 (1988) 229.

[10] M.C. Bustos, F. Concha, AIChE J. 34 (1988) 859.
[11] B. Fitch, Ing. Eng. Chem. 58 (1966) 18.
[12] R. Font, M. Pérez, C. Pastor, Ind. Eng. Chem. 33 (1994) 2859.
[13] D.C. Dixon, Chem. Eng. Sci. 36 (1981) 499.
[14] K.A. Landman, L.R. White, R. Buscall, AIChE J. 34 (1988) 239.
[15] F.M. Tiller, W. Chen, Chem Eng. Sci 43 (1988) 1695.
[16] R. Font, Chem. Eng. Sci. 46 (1991) 2473.
[17] K. Terzaghi, R.B. Peck, Soil Mechanics in Engineering Practice,

Wiley, New York, 1948.
[18] M. Shirato, H. Kato, K. Kobayasi, H. Skazaki, J. Chem. Eng. Jpn.

3 (1970) 98.
[19] M. Pérez, R. Font, C. Pastor, Comp. Chem. Eng. 22 (1998) 1531.
[20] M. Gaudin, M.C. Fuersteneau, Preprint, Intern. Mining Proc. Congr.

London, April, 1960.
[21] F.M. Tiller, Catscan analysis of sedimentation and constant pressure

filtration, in: Proceedings of the Fifth World Filtration Congress,
Nice, 1991.


